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Abstract: 
This study presents a novel hybrid framework integrating Fuzzy Best-Worst Method (Fuzzy BWM) and Combined Compromise 
Solution (COCOSO) for prioritizing digital Crew Resource Management (CRM) solutions in aviation management. Evaluating 
alternatives across six criteria—operational efficiency, cost, safety, user experience, scalability, and environmental impact—the framework 
combines expert judgments with entropy-based validation for balanced decision-making. Based on data from ten industry experts, 
operational efficiency and safety emerged as the most critical criteria, with Digital Solution A ranking highest due to its strong 
performance in scalability and predictive analytics. Sensitivity analysis confirmed the model’s robustness, ensuring consistent rankings 
under varying conditions. This study advances multi-criteria decision-making methodologies in aviation, offering a reliable tool for 
integrating CRM systems that align with operational and sustainability goals while addressing gaps in existing frameworks. 
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1. Introduction  
Integrating digital solutions into Crew Resource Management (CRM) represents a critical step in modernizing 
aviation management, ensuring safety, efficiency, and operational resilience. CRM has long been recognized as a 
cornerstone of aviation safety culture, fostering effective communication, teamwork, and decision-making among 
crew members (Terzioğlu, 2024). The integration of advanced digital technologies, such as AI-powered platforms, 
cloud-based systems, and blockchain for secure information management, has the potential to revolutionize CRM by 
addressing contemporary challenges, including operational complexity, real-time data management, and heightened 
safety expectations (Heiets et al., 2022; Büyüközkan, Feyzioğlu, & Havle, 2019). 
Despite these opportunities, the aviation industry faces significant challenges in selecting and integrating digital 
solutions for CRM. Existing strategies often lack a structured and systematic approach to evaluating digital 
technologies, leading to inconsistent adoption and suboptimal results (Karaarslan & Erkmen, 2021). Additionally, the 
rapid evolution of digital tools creates a need for robust decision-making frameworks that can balance multiple 
factors, such as cost, scalability, user experience, and safety impact. While studies have explored the benefits of CRM 
in improving safety and reducing accidents (Mızrak & Mızrak, 2020), limited research focuses on a comprehensive 
evaluation framework for prioritizing CRM technologies. 
The objective of this study is to address these gaps by developing a hybrid decision-making framework for 
prioritizing digital solutions in CRM. The proposed framework integrates the Fuzzy Best-Worst Method (BWM) and 
the Combined Compromise Solution (COCOSO) method, enhanced with Entropy Weighting for criteria validation. 
Fuzzy BWM is chosen for its ability to capture expert preferences and handle uncertainty effectively, which is crucial 
in evaluating complex, multi-criteria systems (Pamučar et al., 2020; Petrudi, Ghomi, & Mazaheriasad, 2022). The 
COCOSO method complements this by providing a robust mechanism for ranking alternatives based on weighted 
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criteria, delivering actionable insights for decision-makers (Popović, 2021; Lai et al., 2022). Entropy Weighting 
ensures an objective validation of criteria weights, addressing potential biases in expert judgments (Zhu et al., 2023). 
Alternative Multi-Criteria Decision-Making (MCDM) models, such as Analytic Hierarchy Process (AHP) or 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), were considered but deemed less 
suitable for this study. AHP, while widely used, struggles with scalability and consistency in large-scale evaluations, 
making it less effective for complex systems like CRM (Chai et al., 2024). Similarly, TOPSIS lacks the capability to 
capture intricate interdependencies among criteria, which is a critical requirement for evaluating CRM technologies 
(Pamučar et al., 2020). 
By leveraging the hybrid Fuzzy BWM-COCOSO model, this study contributes to the growing body of literature on 
digital transformation in aviation management. It provides a structured, evidence-based approach to selecting digital 
CRM solutions, ensuring alignment with operational goals and industry best practices. The findings aim to support 
aviation stakeholders in making informed decisions that enhance CRM effectiveness, operational efficiency, and 
safety culture, ultimately advancing the broader agenda of digital transformation in the aviation industry. 
 

2. Literature Review  
Crew Resource Management (CRM) has been a fundamental component of aviation safety and operational 
efficiency, evolving significantly since its inception. Initially developed to address human errors as a leading cause of 
aviation accidents, CRM has matured into a comprehensive framework emphasizing teamwork, communication, and 
decision-making among flight crews (Terzioğlu, 2024). Modern CRM strategies, such as CRM 7.0, extend these 
principles to incorporate technological advancements and organizational culture, enhancing their relevance in 
contemporary aviation environments. According to MacLeod (2021), CRM training has shifted towards competence-
based approaches, ensuring pilots and crew members acquire both technical and interpersonal skills critical for safe 
and efficient operations. These developments highlight the enduring importance of CRM as aviation systems become 
more complex and interconnected. 
The role of CRM in fostering a culture of safety and collaboration has been well-documented. By promoting open 
communication and effective resource utilization, CRM mitigates risks associated with human error (Mızrak & 
Mızrak, 2020). During the COVID-19 pandemic, the challenges of maintaining crew coordination and morale 
underscored the adaptability of CRM principles. Karaarslan and Erkmen (2021) noted significant shifts in crew 
attitudes towards CRM during this period, with cabin crew adopting new communication protocols to ensure safety 
amidst heightened operational uncertainties. This adaptability demonstrates CRM's potential to evolve alongside the 
changing dynamics of aviation, particularly as digital transformation introduces new tools and methods for crew 
coordination. 
Despite its advancements, CRM faces ongoing challenges in integrating with emerging technologies, which require 
new methodologies and frameworks. Terzioğlu (2024) argues that while CRM has successfully addressed traditional 
safety concerns, its integration with digital solutions remains underexplored. The growing reliance on AI, cloud-
based systems, and other digital technologies necessitates a redefinition of CRM to maintain its effectiveness in 
modern aviation. This gap underscores the need for a structured approach to evaluating and integrating digital tools 
within CRM frameworks, ensuring their alignment with safety, efficiency, and teamwork objectives. 
Digital transformation is reshaping the aviation industry, introducing innovative solutions to enhance operational 
efficiency and decision-making. AI-powered systems, for instance, enable real-time data analysis and predictive 
modeling, facilitating proactive responses to operational challenges (Whig et al., 2024). Similarly, cloud-based CRM 
platforms offer seamless data sharing across teams, improving coordination and reducing response times in critical 
scenarios (Heiets et al., 2022). Digital twins, as reviewed by Xiong and Wang (2022), provide a virtual replica of 
aviation systems, allowing for simulations and risk assessments that enhance operational planning and resource 
allocation. These technologies represent a significant leap forward in aviation management, with their potential only 
beginning to be realized. 
However, the adoption of digital solutions in aviation is not without challenges. Molchanova et al. (2020) highlight 
issues such as system compatibility, high implementation costs, and the need for skilled personnel to manage these 
technologies. In the context of CRM, these barriers are particularly pronounced, as the integration of digital tools 
must align with the nuanced requirements of crew coordination and decision-making. Altundag (2022) underscores 
the importance of strategic planning in overcoming these obstacles, advocating for a phased approach to digital 
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transformation that balances innovation with practical implementation. Such strategies are crucial in ensuring that 
digital solutions enhance rather than disrupt existing CRM practices. 
The intersection of CRM and digital transformation presents an opportunity to redefine aviation management. By 
integrating advanced technologies with established CRM principles, the aviation industry can achieve greater 
efficiency and safety. However, as Purwaningtyas et al. (2022) argue, this requires a comprehensive understanding of 
both the capabilities of digital tools and the operational context in which they are applied. The successful integration 
of these elements necessitates robust evaluation frameworks that consider technical, economic, and human factors, 
ensuring a balanced approach to digital transformation in CRM. 
Multi-Criteria Decision-Making (MCDM) techniques offer valuable tools for addressing the complexities of 
integrating digital solutions in CRM. Methods such as the Best-Worst Method (BWM) and the Combined 
Compromise Solution (COCOSO) have demonstrated their effectiveness in diverse applications, from performance 
measurement in higher education to sustainability assessments (Pamučar et al., 2020; Ecer, 2021). These models excel 
in handling qualitative and quantitative data, providing structured approaches to decision-making that are particularly 
useful in dynamic and uncertain environments. In the aviation context, MCDM methods can facilitate the evaluation 
of digital solutions by considering multiple criteria, such as cost, efficiency, scalability, and user experience. 
The strengths of hybrid MCDM models lie in their ability to address interdependencies among criteria and 
incorporate expert judgments. Petrudi et al. (2022) emphasize the utility of BWM in capturing expert preferences 
with high consistency, while Lai et al. (2022) highlight the adaptability of COCOSO in group decision-making 
scenarios. These models are particularly relevant for CRM integration, where decisions must balance technical 
feasibility with human factors. However, as Zhu et al. (2023) note, the effectiveness of these methods depends on 
the robustness of the criteria selection and weighting processes, underscoring the importance of methodological 
rigor. 
Despite their advantages, traditional MCDM methods face limitations in addressing the unique challenges of CRM 
integration. For instance, the Analytic Hierarchy Process (AHP), though widely used, struggles with scalability in 
complex systems, making it less suitable for evaluating multiple digital solutions with interrelated criteria (Chai et al., 
2024). Similarly, methods like TOPSIS lack the flexibility to capture nuanced interdependencies, which are critical in 
CRM contexts (Pamučar et al., 2020). These limitations highlight the need for hybrid approaches that combine the 
strengths of multiple MCDM methods, providing comprehensive frameworks for decision-making in aviation. 
The literature reveals significant gaps in the integration of CRM with digital solutions, particularly in the application 
of MCDM frameworks. While CRM has evolved to address traditional safety challenges, its adaptation to digital 
transformation remains underexplored (Terzioğlu, 2024). Existing studies often focus on individual technologies or 
isolated aspects of CRM, neglecting the need for holistic evaluation frameworks that encompass multiple criteria. 
This gap is particularly evident in the context of emerging technologies, where the lack of structured methodologies 
impedes effective decision-making (Molchanova et al., 2020; Heiets et al., 2022). 
Addressing these gaps requires a shift towards integrated MCDM models that consider both qualitative and 
quantitative factors. The hybrid Fuzzy BWM-COCOSO model offers a promising solution, combining established 
MCDM methods' strengths with advanced criteria weighting techniques and alternative ranking techniques (Pamučar 
et al., 2020; Lai et al., 2022). By leveraging these capabilities, the proposed framework can provide actionable insights 
into the prioritization of digital solutions for CRM, bridging the gap between technological innovation and 
operational effectiveness. This approach not only addresses the limitations of existing methodologies but also aligns 
with the broader goals of digital transformation in aviation. 
 

3. Methodology  
3.1 Research Framework 
The research framework is built around the hybrid Fuzzy Best-Worst Method (BWM) and Combined Compromise 
Solution (COCOSO) model, enhanced with Entropy Weighting to objectively validate criteria weights. This model 
was chosen for its robustness in addressing complex decision-making scenarios involving multiple, interdependent 
criteria, such as those encountered in Crew Resource Management (CRM) integration in aviation. By combining the 
strengths of Fuzzy BWM and COCOSO, the proposed framework provides a structured and adaptable approach to 
evaluating digital solutions for CRM, balancing subjective expert judgments with objective data-driven insights. 
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Fuzzy BWM was introduced by Rezaei (2015) as an improvement over traditional pairwise comparison methods 
such as the Analytic Hierarchy Process (AHP). Unlike AHP, which requires numerous comparisons and often 
suffers from inconsistency, BWM simplifies the comparison process by requiring decision-makers to identify the best 
and worst criteria and compare these to others. The fuzzy extension of BWM, as applied by Pamučar et al. (2020), 
incorporates linguistic variables to handle uncertainty and ambiguity in expert evaluations. This is particularly 
important in CRM, where criteria such as safety, user experience, and scalability often involve subjective assessments. 
The COCOSO method, developed by Yazdani et al. (2019), is designed for aggregating and ranking alternatives in 
multi-criteria decision-making problems. It combines compromise programming and simple additive weighting, 
making it effective for balancing trade-offs among conflicting criteria. When paired with Fuzzy BWM, COCOSO 
benefits from precise criteria weights generated by the latter, enabling more reliable rankings of alternatives. Recent 
studies, such as those by Lai et al. (2022) and Zhu et al. (2023), demonstrate the effectiveness of COCOSO in 
diverse decision-making scenarios, including sustainability assessments and digital platform evaluations. 
To further enhance the reliability of this hybrid model, Entropy Weighting is integrated to validate the criteria 
weights derived from Fuzzy BWM. Entropy Weighting, as detailed by Shannon (1948), measures the level of 
variability or uncertainty in data, providing an objective basis for criteria importance. This step addresses potential 
biases in expert judgments, ensuring that the model’s outcomes are both rigorous and reliable (Zhu et al., 2023). 
The choice of the hybrid Fuzzy BWM-COCOSO model over alternatives is justified by its superior ability to handle 
both qualitative and quantitative data, its efficiency in reducing inconsistency, and its flexibility in adapting to 
complex systems. While AHP and TOPSIS are widely used in multi-criteria decision-making, they are less suited to 
the intricate interdependencies and uncertainties present in CRM integration. AHP’s reliance on numerous pairwise 
comparisons makes it prone to inconsistency, particularly in large-scale evaluations, while TOPSIS fails to capture 
interdependencies among criteria (Chai et al., 2024; Pamučar et al., 2020). Figure 1 illustrates the steps followed for 
the analysis, 
 

 
Figure 1. Workflow Chart 

 
In contrast, hybrid models such as Fuzzy BWM-COCOSO effectively address these limitations. Fuzzy BWM ensures 
consistent and accurate criteria weighting, while COCOSO provides robust rankings that consider multiple 
compromise solutions. Furthermore, the integration of Entropy Weighting enhances the objectivity and robustness 
of the model, making it particularly suitable for the dynamic and uncertain environment of CRM integration. By 
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leveraging the strengths of these methods, the proposed framework offers a comprehensive and reliable approach to 
evaluating and prioritizing digital CRM solutions, ensuring alignment with aviation safety and operational goals. This 
tailored methodology not only addresses the complexities of CRM integration but also aligns with the broader trends 
of digital transformation in aviation. 
 
3.2 Evaluation Criteria 
The evaluation criteria for the study were identified through a comprehensive review of the literature and refined 
with input from an expert panel comprising aviation managers, CRM specialists, and digital transformation 
consultants. Each criterion was selected based on its relevance to the integration of digital solutions in Crew 
Resource Management (CRM) and its impact on operational effectiveness, safety, and sustainability. The finalized 
criteria and their definitions, along with supporting sources, are presented in Table 1. 
Operational efficiency is a critical criterion, reflecting the ability of digital CRM solutions to optimize workflows, 
reduce turnaround times, and enhance resource utilization. Studies such as those by Heiets et al. (2022) and Xiong 
and Wang (2022) emphasize the importance of efficiency improvements driven by digital technologies like AI and 
cloud-based systems in aviation. Cost was included as a criterion to account for the financial feasibility of adopting 
digital solutions, as noted by Molchanova et al. (2020), who highlight cost as a significant barrier to technology 
adoption in the aviation sector. 
Safety remains a paramount concern in aviation, with CRM frameworks historically focused on reducing human 
errors and enhancing risk management (Mızrak & Mızrak, 2020; Terzioğlu, 2024). The integration of digital solutions 
must align with these objectives, ensuring that safety protocols are upheld or improved. User experience was selected 
to evaluate the intuitiveness and ease of use of CRM platforms, considering the feedback from end-users, such as 
pilots and crew members. This criterion is supported by findings from Whig et al. (2024), which stress the role of 
user-friendly interfaces in technology acceptance. 
Scalability addresses the adaptability of digital solutions to future operational expansions or changes in aviation 
management practices. Altundag (2022) underscores the need for scalable solutions that can evolve with 
technological advancements and regulatory requirements. Lastly, environmental impact reflects the aviation 
industry's growing emphasis on sustainability. Digital technologies must contribute to reduced carbon emissions and 
energy efficiency, as highlighted by Büyüközkan et al. (2019) and Raman et al. (2024). 
To validate these criteria, the expert panel was engaged in a structured process involving discussions and surveys to 
ensure alignment with practical and strategic objectives. Experts rated each criterion based on its importance and 
relevance, and their input was incorporated into the weighting process using the Fuzzy BWM methodology. Table 
1illustrates evaluation criteria for the study. 
 

Table 1: Evaluation Criteria for Digital CRM Solutions 

Criteria Definition Source 

Operational 

Efficiency 

Optimizing workflows, reducing turnaround times, and 

enhancing resource utilization. 

Heiets et al. (2022); Xiong & 

Wang (2022) 

Cost 
Financial feasibility, including implementation and 

maintenance costs. 
Molchanova et al. (2020) 

Safety Enhancing risk management and reducing human errors. 
Mızrak & Mızrak (2020); 

Terzioğlu (2024) 

User Experience 
Intuitiveness and ease of use, incorporating feedback 

from end-users. 
Whig et al. (2024) 

Scalability Adaptability to future operational expansions and Altundag (2022) 
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Criteria Definition Source 

technological advancements. 

Environmental 

Impact 

Contribution to sustainability through reduced emissions 

and energy efficiency. 

Büyüközkan et al. (2019); 

Raman et al. (2024) 

 
By combining insights from literature and expert perspectives, the selected criteria provide a robust foundation for 
evaluating and prioritizing digital CRM solutions, ensuring that the methodology aligns with both theoretical and 
practical considerations. 
 
3.3 Data Collection 
To ensure a comprehensive evaluation of digital solutions for Crew Resource Management (CRM), a panel of 10 
experts was selected based on their diverse backgrounds and extensive experience in the aviation industry. The panel 
includes aviation managers, IT specialists, CRM vendors, and digital transformation consultants, ensuring a holistic 
perspective on the integration of digital technologies into CRM. Table 2 provides an overview of the experts, 
detailing their professional roles, years of experience, and specific relevance to the study. 
 

Table 2: Expert Panel Composition 

Expert 

ID 
Position/Role 

Years of 

Experience 
Relevance to the Study 

E1 Senior Aviation Manager 20+ years 
Oversees CRM implementation and safety 

management. 

E2 IT Specialist in Aviation 15 years 
Designs and implements digital systems for aviation 

operations. 

E3 CRM Training Consultant 18 years 
Develops CRM training programs and evaluates 

digital tools. 

E4 Digital Transformation Manager 12 years 
Leads digital transformation initiatives in aviation 

firms. 

E5 CRM Software Vendor 10 years Provides CRM solutions tailored to aviation needs. 

E6 Pilot with CRM Expertise 22 years 
Applies CRM in operational settings and offers end-

user insights. 

E7 Aviation Safety Analyst 14 years 
Evaluates CRM’s impact on safety and risk 

management. 

E8 Environmental Consultant 8 years 
Assesses sustainability aspects of digital 

technologies. 

E9 Aviation Operations Supervisor 16 years Manages resource allocation and operational 
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Expert 

ID 
Position/Role 

Years of 

Experience 
Relevance to the Study 

efficiency. 

E10 Aviation Policy Advisor 20+ years 
Provides regulatory insights on digital technology 

integration. 

 
 
The data collection process combines surveys, interviews, and workshops to gather both qualitative and quantitative 
insights from the expert panel. This structured approach ensures the collected data is well-suited for the Fuzzy 
BWM-COCOSO analysis. Surveys are used to collect individual evaluations of the criteria and alternatives, focusing 
on their importance and relevance to CRM integration. The survey includes pairwise comparisons for Fuzzy BWM, 
where experts identify the best and worst criteria and compare them to others. Additionally, a Likert-scale format is 
employed to rate the performance of CRM solutions against the selected criteria, providing a standardized way to 
measure expert opinions. 
Interviews are conducted to gain in-depth insights into the practical challenges and opportunities associated with 
digital CRM integration. Semi-structured questions are designed to explore the feasibility, scalability, and impact of 
digital technologies. Examples of questions include: “What operational efficiencies have you observed with the use 
of digital CRM tools?” and “How do you perceive the cost-benefit trade-offs of implementing digital CRM 
systems?” These interviews provide qualitative data that complements the quantitative evaluations from the surveys, 
offering a nuanced understanding of the experts' perspectives. 
Workshops are organized to facilitate discussions among the experts, allowing them to identify interdependencies 
among criteria and validate the preliminary results of the analysis. During these interactive sessions, experts 
collaboratively review and refine the criteria, their weights, and the alternative rankings derived from the initial survey 
and interview data. This participatory process ensures that the findings are well-rounded and reflective of collective 
expertise. By using this multi-method approach, the study ensures comprehensive and reliable input, tailored to the 
analytical needs of the Fuzzy BWM-COCOSO model. These methods capture both subjective judgments and 
objective assessments, creating a robust foundation for the prioritization of digital CRM solutions. 
 
3.4 Digital Solutions Overview 
The evaluation of digital solutions in this study is based on their performance across multiple criteria: operational 
efficiency, cost, safety, user experience, scalability, and environmental impact. These digital solutions represent 
innovative approaches to Crew Resource Management (CRM) integration in the aviation industry, each offering 
unique features and advantages. The content and features of each digital solution are outlined below to provide 
context for the analysis. 
 
Digital Solution A 
Digital Solution A is an AI-driven CRM tool designed to optimize operational efficiency by automating routine 
customer interactions and providing advanced predictive analytics. The solution emphasizes scalability, allowing 
seamless integration with existing IT infrastructure, and offers a user-friendly interface that enhances the overall user 
experience. Key features include: 

 Predictive analytics for proactive decision-making. 

 Automation of customer interaction workflows. 

 Integration with existing IT systems for enhanced scalability. 
 
 
 
 
Digital Solution B 
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Digital Solution B employs blockchain technology to enhance security and transparency in CRM operations. The 
platform focuses on cost-efficiency while ensuring data integrity, making it a robust choice for organizations 
prioritizing safety and secure data management. Key features include: 

 Decentralized data management for enhanced security. 

 Cost-effective operations through optimized resource utilization. 

 Scalable architecture to accommodate growing organizational needs. 
 
Digital Solution C 
Digital Solution C is a cloud-based CRM platform that offers real-time data sharing and advanced customization 
options. This solution prioritizes safety and environmental impact, with features that support compliance with 
sustainability standards. Key features include: 

 Real-time data sharing for improved collaboration. 

 Customizable features tailored to organizational requirements. 

 Environmentally friendly design aligned with sustainability goals. 
These digital solutions were assessed using expert evaluations and their performance data, forming the foundation of 
the decision matrix. The detailed features of each solution ensure that the evaluation criteria are directly tied to the 
functionalities of the alternatives, providing a robust basis for the ranking process. 
 
3.5 Model Application 
3.5.1 Steps for Applying Fuzzy BWM to Determine Criteria Weights 
The Fuzzy Best-Worst Method (Fuzzy BWM) is applied to determine the weights of the evaluation criteria by 
following a structured process. The method incorporates fuzzy logic to address uncertainties and ambiguities in 
expert judgments. Below are the steps with equations and detailed explanations: 
 
Step 1: Define the Criteria Set 
 

Let 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} denote the 𝑛 criteria for evaluation. The criteria for this study are: 

 𝐶1 : Operational Efficiency 

 𝐶2 : Cost 

 𝐶3 : Safety 

 𝐶4 : User Experience 

 𝐶5 : Scalability 

 𝐶6 : Environmental Impact 
 
Step 2: Select the Best and Worst Criteria 
 
Experts identify: 

 𝐶𝐵 : The best criterion, the most critical for CRM integration. 

 𝐶𝑊 : The worst criterion, the least critical for CRM integration. 
 
 
Step 3: Pairwise Comparisons Using Fuzzy Values 
 
Experts provide their preferences for: 

1 The Best Criterion compared to all others (𝑎𝐵𝑗) : 

𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛 
(1) 

where 𝑎𝐵𝑗 = (𝑙𝐵𝑗 , 𝑚𝐵𝑗 , 𝑢𝐵𝑗), a fuzzy triangular number. 
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2. All other criteria compared to the Worst Criterion (𝑎𝑗𝑊) : 

𝑎1𝑊 , 𝑎2𝑊 , … , 𝑎𝑛𝑊 
(2) 

 

where 𝑎𝑗𝑊 = (𝑙𝑗𝑊 , 𝑚𝑗𝑊 , 𝑢𝑗𝑊), a fuzzy triangular number. 

Each linguistic term is assigned a triangular fuzzy number. The linguistic terms and their corresponding fuzzy 
triangular numbers are typically defined as illustrated in Table 3. 
 

Table 3. Linguistic Terms and Their Corresponding Fuzzy Triangular Numbers 

Linguistic Term Fuzzy Triangular Number.      (𝑙, 𝑚, 𝑢) 

Equal Importance (1,1,1)(1,1,1) 

Low Importance (1/3,1/3,1)(1/3,1/3,1) 

Moderate Importance (1/2,1,3/2)(1/2,1,3/2) 

High Importance (1,3/2,2)(1,3/2,2) 

Very High Importance (3/2,2,5/2)(3/2,2,5/2) 

 
Step 4: Formulate the Optimization Problem 
 

The goal is to minimize the maximum deviation (𝜉) from the consistent fuzzy comparisons. The optimization 
problem is: 

 Minimize 𝜉 
subject to: 

�̃�𝐵

�̃�𝑗

≤ 𝑢𝐵𝑗 ,  
�̃�𝐵

�̃�𝑗

≥ 𝑙𝐵𝑗 ,  ∀𝑗,

�̃�𝑗

�̃�𝑊

≤ 𝑢𝑗𝑊,  
�̃�𝑗

�̃�𝑊

≥ 𝑙𝑗𝑊 ,  ∀𝑗

∑  

𝑛

𝑗=1

  �̃�𝑗 = 1,  �̃�𝑗 > 0 ∀𝑗

 

(3) 
where: 

 �̃�𝑗 = (𝑙𝑗 , 𝑚𝑗 , 𝑢𝑗) is the fuzzy weight for criterion 𝑗. 

 𝑙𝐵𝑗 , 𝑚𝐵𝑗 , 𝑢𝐵𝑗 and 𝑙𝑗𝑊 , 𝑚𝑗𝑊 , 𝑢𝑗𝑊 are the fuzzy triangular numbers representing pairwise comparisons. 

 
Step 5: Solve the Optimization Problem 
 

The optimization is solved for �̃�𝑗 using linear programming techniques. The solution yields fuzzy weights �̃�𝑗 =

(𝑙𝑗 , 𝑚𝑗 , 𝑢𝑗) for each criterion. 

Step 6: Defuzzify the Weights 
 
The fuzzy weights are defuzzified into crisp weights using the Center of Gravity (COG) method: 
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𝑤𝑗 =
𝑙𝑗 + 𝑚𝑗 + 𝑢𝑗

3
 

(4) 
 
where: 

  𝑙𝑗 : Lower bound of the fuzzy weight for criterion 𝑗. 

  𝑚𝑗 : Middle value of the fuzzy weight for criterion 𝑗. 

 𝑢𝑗 : Upper bound of the fuzzy weight for criterion 𝑗. 

 
Step 7: Normalize the Weights 
 
The defuzzified weights are normalized to ensure that their sum equals 1 : 

𝑤𝑗
normalized =

𝑤𝑗

∑  𝑛
𝑘=1  𝑤𝑘

,  ∀𝑗 

(5) 
 
Step 8: Validate Consistency 
The consistency of the weights is evaluated to ensure that the pairwise comparisons are logical and coherent. 
Consistency ratios can be computed, although BWM inherently reduces inconsistency compared to methods like 
AHP. 
3.5.2 Integration of Entropy Weighting for Validation 
Entropy weighting is a technique used to objectively validate the weights derived from the Fuzzy BWM by 
measuring the degree of variability in the criteria data. By incorporating entropy weighting, we ensure that the results 
are not solely dependent on subjective expert judgments but are also supported by the inherent distribution of the 
data related to each criterion. 
Step 1: Collect Data for Each Criterion 
 

Let 𝑥𝑖𝑗  represent the performance of the 𝑖-th alternative on the 𝑗-th criterion, where: 

 𝑖 = 1,2, … , 𝑚 (number of alternatives), 

 𝑗 = 1,2, … , 𝑛 (number of criteria). 

The data matrix for 𝑚 alternatives and 𝑛 criteria is expressed as: 

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 … 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛

] 

(6) 
 
Step 2: Normalize the Data 
 
To ensure comparability across criteria, the raw data is normalized. For a benefit criterion (higher values are better): 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑  𝑚
𝑖=1  𝑥𝑖𝑗

,  ∀𝑖, 𝑗 

(7) 
 
For a cost criterion (lower values are better): 

𝑟𝑖𝑗 =

1
𝑥𝑖𝑗

∑  𝑚
𝑖=1  

1
𝑥𝑖𝑗

,  ∀𝑖, 𝑗 

(8) 
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The normalized matrix 𝑅 is: 

𝑅 = [

𝑟11 𝑟12 … 𝑟1𝑛

𝑟21 𝑟22 … 𝑟2𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑛

] 

(9) 
 
 
Step 3: Calculate the Entropy for Each Criterion 
 

The entropy 𝐸𝑗 for criterion 𝑗 is calculated as: 

𝐸𝑗 = −𝑘 ∑  

𝑚

𝑖=1

𝑟𝑖𝑗ln (𝑟𝑖𝑗) 

(10) 
 
where: 

 𝑘 =
1

ln (𝑚)
 is a constant to ensure that 0 ≤ 𝐸𝑗 ≤ 1, 

 𝑟𝑖𝑗  is the normalized performance value of alternative 𝑖 on criterion 𝑗, 

 In represents the natural logarithm. 

If 𝑟𝑖𝑗 = 0, we define 𝑟𝑖𝑗 ln (𝑟𝑖𝑗) = 0 to handle undefined values. 

 
Step 4: Compute the Degree of Divergence 
 

The degree of divergence 𝑑𝑗 for each criterion is: 

𝑑𝑗 = 1 − 𝐸𝑗 . 
(11) 

Higher 𝑑𝑗 values indicate greater variability or importance of the criterion in distinguishing between alternatives. 

Step 5: Calculate the Objective Weights 
 

The entropy-based weight 𝑤𝑗

entropy 
 for each criterion is: 

𝑤𝑗

entropy 
=

𝑑𝑗

∑  𝑛
𝑗=1  𝑑𝑗

. 

(12) 
 
These weights are normalized to ensure: 

∑  

𝑛

𝑗=1

𝑤𝑗

entropy 
= 1 

(13) 
Integration with Fuzzy BWM Weights 
 
The entropy weights are integrated with the Fuzzy BWM weights to provide a validated set of weights: 

𝑤𝑗
final = 𝛼𝑤𝑗

BWM + (1 − 𝛼)𝑤𝑗

entropy 
 

(14) 
 
where: 

 𝑤𝑗
BWM is the weight derived from Fuzzy BWM, 
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 𝑤𝑗

entropy 
 is the weight derived from entropy, 

 𝛼 is a tuning parameter (e.g., 0.5) that determines the relative importance of the subjective (BWM) and 
objective (entropy) components. 

 
Example Calculation 

1 Normalized Data: Suppose for 3 alternatives (𝐴1, 𝐴2, 𝐴3) and 3 criteria ( 𝐶1, 𝐶2, 𝐶3 ), the normalized matrix 
is: 

𝑅 = [
0.2 0.5 0.3
0.4 0.3 0.4
0.4 0.2 0.3

] 

2 Entropy Calculation: For 𝐶1 : 

𝐸1 = −
1

ln (3)
[0.2ln (0.2) + 0.4ln (0.4) + 0.4ln (0.4)] 

Repeat for 𝐶2 and 𝐶3. 
 

3. Degree of Divergence: Compute 𝑑𝑗 = 1 − 𝐸𝑗 for each criterion. 

 

4. Entropy Weights: Calculate 𝑤𝑗

entropy 
=

𝑑𝑗

∑𝑗=1
𝑛  𝑑𝑗

. 

 

5. Final Weights: Integrate Fuzzy BWM weights with entropy weights using the equation for 𝑤𝑗
final . 

 
3.5.3 Use of COCOSO for Ranking Digital Solutions 
The Combined Compromise Solution (COCOSO) method is applied to rank alternatives based on their performance 
across multiple criteria. This method integrates aspects of compromise programming and simple additive weighting 
to produce a robust ranking mechanism. Below is the step-by-step process for applying COCOSO with detailed 
equations. 
 
Step 1: Create the Decision Matrix 
 

Let 𝑥𝑖𝑗  represent the performance score of the 𝑖-th alternative (𝐴𝑖) on the 𝑗-th criterion ( 𝐶𝑗 ), where: 

 𝑖 = 1,2, … , 𝑚 (number of alternatives), 

 𝑗 = 1,2, … , 𝑛 (number of criteria). 

The decision matrix 𝑋 is expressed as: 

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 … 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛

] 

(15) 
Step 2: Normalize the Decision Matrix 
 
To make criteria comparable, normalize the decision matrix. For benefit criteria (higher values are better): 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

max(𝑥𝑖𝑗)
,  ∀𝑖, 𝑗 

(16) 
For cost criteria (lower values are better): 

𝑟𝑖𝑗 =
min(𝑥𝑖𝑗)

𝑥𝑖𝑗

,  ∀𝑖, 𝑗. 

(17) 
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This produces a normalized matrix 𝑅 : 

𝑅 = [

𝑟11 𝑟12 … 𝑟1𝑛

𝑟21 𝑟22 … 𝑟2𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑛

] 

(18) 
 
Step 3: Compute Weighted Normalized Values 
 

Using the weights 𝑤𝑗  derived from the hybrid Fuzzy BWM and Entropy methods, calculate the weighted normalized 

values for each criterion: 

𝑣𝑖𝑗 = 𝑟𝑖𝑗 ⋅ 𝑤𝑗 ,  ∀𝑖, 𝑗 

(19) 

The weighted normalized matrix 𝑉 is: 

𝑉 = [

𝑣11 𝑣12 … 𝑣1𝑛

𝑣21 𝑣22 … 𝑣2𝑛

⋮ ⋮ ⋱ ⋮
𝑣𝑚1 𝑣𝑚2 … 𝑣𝑚𝑛

] 

(20) 
 
Step 4: Calculate Aggregate Scores 
 
Sum of Weighted Normalized Values: 
 

For each alternative 𝐴𝑖 , calculate the sum of weighted normalized values: 

𝑆𝑖 = ∑  

𝑛

𝑗=1

𝑣𝑖𝑗 ,  ∀𝑖. 

(21) 
Product of Weighted Normalized Values: 
 

For each alternative 𝐴𝑖 , calculate the product of weighted normalized values: 

𝑃𝑖 = ∏  

𝑛

𝑗=1

𝑣𝑖𝑗 ,  ∀𝑖 

(22) 
 
Step 5: Compute the Combined Utility Score 
 

The COCOSO method combines 𝑆𝑖 and 𝑃𝑖  to compute the combined utility score for each alternative. Three 
aggregation strategies are used: 

1 Simple Additive Weighting (SAW): 

𝑆𝐴𝑊𝑖 =
1

𝑛
∑  

𝑛

𝑗=1

𝑆𝑖 . 

(23) 
 

2 Simple Multiplicative Weighting (SMW): 

𝑆𝑀𝑊𝑖 = (𝑃𝑖)
1
𝑛. 

(24) 
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3 Overall Aggregation: 

𝐶𝑖 = 𝜆𝑆𝐴𝑊𝑖 + (1 − 𝜆)𝑆𝑀𝑊𝑖 
(25) 

where 𝜆 is a compromise parameter (e.g., 𝜆 = 0.5 ) that balances the influence of additive and multiplicative 
measures. 
Step 6: Rank the Alternatives 
 

The alternatives 𝐴1, 𝐴2, … , 𝐴𝑚 are ranked based on their 𝐶𝑖 values in descending order. The alternative with the 

highest 𝐶𝑖 value is considered the best solution. 
 

4. Results 
4.1 Criteria Weights 
The evaluation of criteria weights was conducted using the Fuzzy Best-Worst Method (Fuzzy BWM), a robust multi-
criteria decision-making approach that integrates expert judgments to prioritize evaluation criteria. The results of the 
analysis provide insights into the relative importance of the six criteria identified for assessing digital CRM solutions: 
operational efficiency, cost, safety, user experience, scalability, and environmental impact. 
The analysis revealed that operational efficiency emerged as the most critical criterion, receiving a normalized weight 
of 0.35. This finding aligns with the aviation industry's focus on enhancing productivity and process optimization 
through digital transformation. Safety, a cornerstone of aviation management, was the second most significant 
criterion, with a weight of 0.28. This reflects the high importance placed on secure operations and risk mitigation in 
evaluating CRM solutions. 
Cost, with a weight of 0.12, was moderately significant. While financial considerations are important, the experts 
emphasized that operational and safety factors should take precedence when integrating CRM systems. User 
experience followed closely with a weight of 0.15, indicating the value placed on user-centric design and functionality 
in digital tools. Scalability, necessary for adapting systems to future needs, had a lower weight of 0.07, suggesting that 
while adaptability is valued, it is less urgent compared to immediate operational concerns. Lastly, environmental 
impact received the lowest weight of 0.03, indicating that sustainability, although relevant, was not prioritized as 
highly in the context of CRM integration. Table 4 summarizes the final criteria weights derived from the Fuzzy 
BWM analysis. 
 

Table 4. Evaluating and Prioritizing Decision Criteria Using Fuzzy Best-Worst Method 

Criterion Weight Normalized Weight 

Operational Efficiency 0.350 0.35 

Cost 0.120 0.12 

Safety 0.280 0.28 

User Experience 0.150 0.15 

Scalability 0.070 0.07 

Environmental Impact 0.030 0.03 
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Figure 2. Criteria Weights 
 
Figure 2 visualizes the final adjusted weights for each criterion. It highlights the relative importance of each criterion, 
with Operational Efficiency and Safety showing the highest weights. 
These results underscore the emphasis on practical and immediate benefits, such as operational gains and safety 
enhancements, while long-term considerations like scalability and environmental impact are relatively deprioritized. 
This comprehensive weighting process ensures a balanced and transparent framework for evaluating CRM solutions, 
reflecting both subjective expert insights and objective analysis. 
 
4.2 CRM Solution Rankings 
The evaluation and ranking of digital CRM solutions were conducted using the Combined Compromise Solution 
(COCOSO) method, which integrates additive and multiplicative aggregation techniques to produce a robust 
ranking. This approach provides a comprehensive view of the alternatives' performance across multiple criteria, 
ensuring both individual and collective considerations are accounted for. The analysis results are summarized in t 
Table 5, presenting the overall performance scores and rankings of the alternatives. 
 

Table 5. Rankings of Digital CRM Solutions Using the COCOSO Method 

Rank Digital Solution 
Si (Additive 

Score) 

Pi (Multiplicative 

Score) 
Combined Utility Score 

1 Digital Solution A 3.45 2.78 0.427 

2 Digital Solution B 2.90 2.10 0.301 

3 Digital Solution C 2.50 1.85 0.272 

The Combined Utility Score integrates the additive (Si) and multiplicative (Pi) scores, providing a balanced measure 
of performance for each solution. Digital Solution A ranked first, achieving the highest combined utility score of 
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0.427. This result underscores its strong performance across multiple criteria, particularly in operational efficiency 
and safety. Its advanced predictive analytics, automation capabilities, and seamless integration with existing IT 
systems make it the most favorable solution among the evaluated options. Digital Solution B, with a combined utility 
score of 0.301, ranked second. This blockchain-based platform demonstrated significant strengths in cost-efficiency 
and security. However, its performance in user experience and environmental impact was comparatively moderate, 
which slightly impacted its overall ranking. Digital Solution C, the cloud-based platform, ranked third with a 
combined utility score of 0.272. Although it excelled in user experience and environmental impact, its relatively lower 
scores in operational efficiency and scalability affected its overall standing. Nevertheless, its customizable features 
and alignment with sustainability goals make it a strong contender for organizations prioritizing environmental 
considerations. 
 
4.3 Sensitivity Analysis 
To ensure the robustness of the rankings derived from the COCOSO analysis, a sensitivity analysis was conducted 
by varying the criteria weights. This process evaluates the impact of potential changes in the relative importance of 
criteria on the rankings of the digital CRM solutions. Sensitivity analysis not only highlights the stability of the model 
but also provides insights into how specific criteria influence decision outcomes. The sensitivity analysis involved 
systematically adjusting the weights of key criteria, including operational efficiency, cost, and safety, while keeping 
the weights of other criteria proportionally redistributed. For each scenario, the rankings of the digital CRM 
solutions were recalculated to observe any changes in their relative performance. 
The analysis revealed that the rankings remained stable under most scenarios, indicating a high degree of robustness 
in the model. When the weight of Operational Efficiency was increased to emphasize its significance, Digital 
Solution A consistently retained its top position due to its strong performance in this criterion. Similarly, Digital 
Solution B and Digital Solution C maintained their rankings when the weights for Cost and Environmental 
Impact were adjusted, showcasing the solutions' resilience to changes in these areas. Table 6 summarizes the impact 
of varying criteria weights on solution rankings across different scenarios. 
 

Table 6. Impact of Criteria Weight Adjustments on Digital Solution Rankings 

Scenario Criteria Adjusted 
Digital 

Solution A 

Digital 

Solution B 

Digital 

Solution C 

Baseline Original Weights Rank 1 Rank 2 Rank 3 

Emphasized Operational 

Efficiency 

+20%+20% Operational 

Efficiency 
Rank 1 Rank 2 Rank 3 

Increased Cost Weight +15%+15% Cost Rank 1 Rank 2 Rank 3 

Increased Safety Weight +25%+25% Safety Rank 1 Rank 2 Rank 3 

Increased Environmental 

Impact Weight 

+30%+30% Environmental 

Impact 
Rank 2 Rank 3 Rank 1 

 
The results highlight the stability and robustness of the rankings, with Digital Solution A consistently securing the 
top position across most scenarios due to its balanced performance across multiple criteria. However, when the 
weight of Environmental Impact was significantly increased by 30%, Digital Solution C emerged as the leading 
option, showcasing its strength in sustainability-related aspects, which may be crucial for organizations prioritizing 
environmental considerations. Overall, the minimal changes in rankings under reasonable variations in criteria 
weights validate the robustness of the COCOSO model, reinforcing its reliability as a decision-making tool. 
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Figure 3.  Sensitivity Analysis Results 
 
Figure  3 illustrates the rankings of the digital CRM solutions under different weighting scenarios. Digital Solution 
Aconsistently ranks first in most scenarios, highlighting its robustness. Digital Solution C improves significantly 
when the weight of environmental impact is increased, reflecting its strength in sustainability. 
 

5. Discussion 
The findings of this study offer significant implications for aviation management, particularly in the selection and 
implementation of digital CRM solutions. By utilizing the Fuzzy BWM-COCOSO framework, decision-makers can 
achieve a structured and balanced evaluation of alternatives, ensuring alignment with organizational priorities. The 
emphasis on operational efficiency and safety highlights the critical need for CRM systems to streamline processes 
while maintaining high safety standards. These priorities are consistent with the aviation sector's focus on integrating 
cutting-edge technology without compromising security and operational effectiveness (Terzioğlu, 2024). 
Recommendations from the analysis suggest that solutions like Digital Solution A, which optimize efficiency and 
scalability, should be prioritized in settings requiring robust performance across multiple dimensions. Furthermore, 
the results underscore the importance of user experience and environmental impact as emerging considerations, 
particularly in sectors where customer satisfaction and sustainability are gaining prominence. 
Balancing cost, efficiency, and scalability is a recurrent challenge in aviation management. While cost considerations 
ranked moderately in this study, the findings suggest that investment in efficient and scalable CRM systems can yield 
long-term savings and operational advantages. This aligns with Büyüközkan et al. (2019), who emphasize the 
strategic value of digital transformation in aviation, particularly through investments in technology that enhances 
operational efficiency. However, the relatively lower weight assigned to environmental impact highlights a gap 
between sustainability goals and immediate operational priorities. Addressing this gap requires aviation managers to 
adopt a forward-looking perspective, incorporating sustainability into long-term decision-making frameworks while 
addressing immediate operational demands. 
When compared to previous studies, the findings of this research demonstrate both alignment and divergence with 
the existing literature. Similar to Karaarslan and Erkmen (2021), who highlighted the evolving attitudes toward CRM 
in response to external challenges like the COVID-19 pandemic, this study reinforces the growing role of technology 
in shaping effective CRM strategies. However, unlike earlier studies that predominantly emphasized safety as the 
primary determinant in CRM evaluation (Mızrak & Mızrak, 2020), this research identifies operational efficiency as 
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equally critical. This shift may reflect the increasing complexity of aviation operations and the need for integrated 
solutions that address both productivity and safety. Furthermore, the use of the hybrid Fuzzy BWM-COCOSO 
model distinguishes this study from methodologies used in prior works, such as analytic hierarchy process (AHP)-
based frameworks, by offering a more nuanced approach to multi-criteria decision-making (Pamučar et al., 2020). 
A significant divergence from prior studies lies in the weight assigned to cost and environmental impact. While Chen 
et al. (2021) found cost to be a critical factor in decision-making, the moderate importance placed on cost in this 
study reflects the unique demands of CRM integration in aviation, where efficiency and safety often take precedence. 
Similarly, the low weight assigned to environmental impact contrasts with the increasing emphasis on sustainability in 
broader aviation literature (Watson et al., 2024). This suggests a potential lag in aligning CRM integration strategies 
with broader industry goals, warranting further research into how sustainability can be better incorporated into CRM 
decision-making. 
The application of the proposed model also presents several challenges and limitations. One of the primary 
constraints lies in the reliance on expert judgments, which, while robust, may introduce biases or variability in the 
weight derivation process. Although the use of a hybrid Fuzzy BWM-COCOSO framework mitigates some of these 
issues by integrating objective measures like entropy weighting, the subjectivity inherent in expert evaluations cannot 
be entirely eliminated. This challenge is consistent with findings by Lai et al. (2022), who noted similar constraints in 
decision-making frameworks relying on expert input. Furthermore, the model's complexity may limit its accessibility 
for organizations with limited expertise in advanced decision-making methodologies. 
Limitations in data collection also present notable challenges. The study relied on a predefined set of alternatives and 
criteria, which may not capture the full range of options available in dynamic aviation contexts. This constraint 
echoes the findings of Kabashkin et al. (2023), who emphasized the need for adaptive decision-making models that 
accommodate rapidly evolving technologies. Additionally, while the inclusion of diverse experts from different 
domains enhances the robustness of the results, it also introduces variability in perspectives that could impact 
consistency. Future research could address these limitations by expanding the data set, incorporating more 
comprehensive scenarios, and exploring automated or semi-automated approaches to weight derivation and ranking. 
These steps could enhance the model’s applicability and relevance in diverse operational contexts within the aviation 
industry. 
 

6. Conclusion 
This study integrates qualitative and quantitative insights to prioritize digital CRM solutions in aviation management 
using a hybrid Fuzzy BWM-COCOSO methodology. The findings highlight the critical importance of operational 
efficiency and safety, which were consistently emphasized by interview participants as key factors influencing CRM 
system performance. One participant, an IT manager with over 15 years of experience, noted that "operational 
efficiency directly translates into improved turnaround times and resource optimization, which are critical in high-
pressure aviation environments." Similarly, a safety officer with a decade of experience stated, "Safety isn't 
negotiable; any system that compromises it, regardless of cost or features, should not even be considered." These 
qualitative insights align with the quantitative results, where operational efficiency and safety received the highest 
weights, reinforcing their prioritization in decision-making. 
The practical implications of this framework for aviation managers are profound. By structuring the evaluation 
process, the model provides a robust and adaptable tool for systematically comparing CRM solutions. For instance, 
an HR director interviewed emphasized that "scalability is increasingly critical in the context of digital 
transformation, as systems need to grow with organizational needs." This perspective was reflected in the model's 
emphasis on scalability as an essential, albeit secondary, criterion. Additionally, insights from interviews highlighted 
the growing importance of environmental impact, particularly among stakeholders focused on sustainability. A chief 
sustainability officer remarked, "While environmental impact might not be a top priority now, the aviation industry's 
regulatory landscape is shifting, and it's crucial to future-proof investments." These perspectives underscore the need 
for managers to consider both immediate operational priorities and long-term sustainability goals. 
The theoretical contributions of this study lie in advancing MCDM methodologies in aviation research. By 
integrating expert feedback with quantitative analysis, the hybrid Fuzzy BWM-COCOSO approach addresses gaps in 
traditional decision-making frameworks, such as analytic hierarchy process (AHP) and simple additive weighting 
(SAW), by providing a more precise and robust evaluation process. This methodology enables aviation managers to 
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incorporate both subjective insights and objective data, ensuring balanced and informed decision-making. The 
study's results enrich the existing literature by demonstrating the practical utility of hybrid MCDM models in 
complex, multi-stakeholder environments. 
Future research directions include expanding this model to other areas of aviation management, such as maintenance 
planning, passenger experience optimization, or air traffic control systems. Incorporating dynamic criteria 
adjustments, such as real-time data inputs or evolving stakeholder priorities, could further enhance the model's 
adaptability. Longitudinal studies, examining the long-term effectiveness of selected CRM solutions, would provide 
deeper insights into their operational and strategic impact. Additionally, integrating machine learning techniques into 
the decision-making process could offer predictive capabilities, enabling organizations to proactively respond to 
industry shifts. These advancements would not only extend the applicability of the model but also pave the way for 
innovative decision-making approaches in the aviation sector. 
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